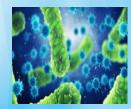


Attention-Deficit/Hyperactivity Disorder is Associated with Increased rates of Childhood Infectious Diseases: A Population-Based Case-Control Study.

Eugene Merzon, MD, Ariel Israel, MD, PhD, Shai Ashkenazi, MD, MSc, Stephen Faraone, PhD, Joseph Biederman, MD, Ilan Green, MD, MHA, Avivit Golan-Cohen, MD, MHA, Shlomo Vinker, MD, MHA, Abraham Weizman, MD, Iris Manor, MD


Leumit Health Services, Tel-Aviv, Israel

Adelson School of Medicine, Ariel University, Ariel, Israel

Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

ADHD Unit, Geha Mental Health Center, Petah-Tikva, Israel

Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Department of Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Background: The SARS-CoV-2 pandemic shows again the significant impact and toll that infectious diseases(IDs) carry in the pediatric population. An association between ADHD and IDs has been previously documented, including COVID-19, influenza, and childhood shigellosis5.

Objective: to test the possibility that ADHD is associated with increased likelihood for IDs at large.

Methods: A population-based case-control study was conducted using EMR Leumit Health Services (LHS). The study population consisted of all individuals (5-18 years), members of LHS between 01-01-2006 to 06-30-2021. Cases: children with ICD-9/10 ADHD diagnosis. Controls included randomly selected non-ADHD subjects (2:1 ratio), matched individually by demographic indices.

Results:

Diagnosis	ADHD	Controls	OR(95% CI)	p value
Total	18,756	37.512		
Bacterial infections				
Streptococcal pharyngitis (034.0)	4,787 (25.5)	8,604 (22.9)	1.2 (1.1-1.2)	<.001
Acute supportive otitis media (382.0)	2,707 (14.4)	4,221 (11.3)	1.3 (1.3-1.4)	< 001
Acute sinusitis (461)	365 (1.9)	605 (1.6)	1.2 (1.1-1.4)	005
Clinical dysentery (004.90)	319 (1.7)	524 (1.4)	1.2 (1.1-1.4)	.006
Shigellosis (004)	214 (1.1)	292 (0.8)	1.5 (1.2-1.8)	<.001
Viral infections				
Unspecified viral infection (079.99)	8,576 (45.7)	14,896 (39.7)	1.3 (1.2-1.3)	<.001
Fungal infections				
Mycosis (110-118)	1,292 (6.9)	2,073 (5.5)	13 (12-14)	<.001
Candidiasis (112)	488 (2.6)	845 (2.3)	1.2 (1.0-1.3)	011
Parasitic infections				
Enteroblasis (127.4)	2,479 (13.2)	3,997 (10.7)	13 (12-13)	< .001
Infections of body systems				
Acute respiratory infection (460-466)	13,912 (74.2)	25,320 (67.5)	1.4 (1.3-1.4)	<.001
Acute gastroenteritis (558.94)	3,636 (19.4)	5,681 (15.1)	1.3 (1.3-1.4)	<.001
Bronchopneumonia (485)	1,315 (7.0)	1,138 (5.7)	1.2 (1.2-1.3)	<.001

Anti-infective agent	ADHD	Control	OR (95% CI)	P value
Total	18,756	37,512		
Anti-bacterial agents				
Amoxicillin	11,615 (61.9)	20,662 (55.1)	1.3 (1.3-1.4)	< 001
Azithromycin	6,614 (35.3)	11,043 (29.4)	1.3 (1.2-1.4)	< .001
Amoxicillin/clavulanate	11,043 (26.3)	11,043 (21.8)	13 (12-13)	< 001
Cephalexin	3,866 (20.6)	5,910 (15.8)	1.4 (1.3-1.5)	< 001
Tobramycin	1,633 (8.7)	2,558 (6.8)	13 (12-14)	< 001
Gentamicin	1,497 (8.0)	2,539 (6.8)	1.2 (1.1-1.3)	< 001
Ceftriaxone	404 (2.2)	575 (1.5)	1.4 (1.2-1.6)	< 001
Anti-viral agents				
Acyclovir	463 (2.4)	684 (1 B)	1.4 (1.2-1.5)	< 001
Anti-fungal agents				
Imidazole	1,587 (8.5)	2,404 (6.4)	1.4 (1.3-1.4)	< 001
Miconazole	1,049 (5.6)	1,701 (4.5)	1.2 (1.1-1.3)	< 001
Anti-parasitic agents				
Mebendazole	4,403 (23.5)	7,281 (19.4)	1.3 (1.2-1.3)	< 001
Metronidazole	397 (2.1)	595 (1.6)	1.3 (1.2-1.5)	< 001

There were significantly higher rates of physicians' visits for those with ADHD.

Conclusions: Study found an association between pediatric ADHD and childhood infectious diseases. Considering the high prevalence of ADHD, these findings are a significant public health concern. Therefore, special awareness of physicians is warranted.

